The generator matrix

 1  0  0  0  1  1  1  3  1  1  1  1  1  1  1  1  1  6  1 2X  X 2X+6  1  1  1  1  1  1  X X+3  1  1  3  1  1  1  1  1 2X+3 2X  1  1  3  1  1  1  1  X  1  X  1  1  1  1  1  1  1 X+6  1  6  1  1  1  3  1
 0  1  0  0  3  1  7  1  X X+6 2X+8 2X+5 X+7  6 X+4 X+2 2X+4  1 2X+5  1 X+6  1  2 2X  3  5 X+8 X+3  1  1 X+7 2X+5 2X X+2 X+6 2X+4  1 2X+7  1  1  6 X+2 X+6  4 2X+3 2X+3 X+5  1 X+3  3  2  4 X+5 X+7  2 X+1 2X+3  1  8 2X X+2 X+6  7 2X 2X+5
 0  0  1  0 2X+4 2X+1 X+2 2X+4 X+1 X+5  6  4 X+7 X+6 2X 2X+3  X  X X+7 2X+5  1 X+4  5 X+5 X+1 2X+1 X+2 2X+5 X+3 2X+8 X+8 X+6  1 2X+2 2X+3  4 2X+6  8 X+8  1 X+7  3  0 2X+8  0 2X+4 X+1  3  8  1 2X X+1 X+6  4  4  3  3  5 2X+2  1 2X+8 2X+7  1  1  3
 0  0  0  1 2X+2  6 2X+8 2X+8  7  X  1 X+6  5  2 X+7  2  3  5 X+1 X+4 X+2  7 X+6 2X+7 X+3 X+5 X+5 X+2 2X+7  X  7 2X 2X+7  4 X+4 X+1 2X+5 2X+6 X+8  7 2X+7 2X+4  1 2X+3 2X+5  6 2X+5  2  2  3 2X+3 X+2  8  4 X+4  5 X+8  6  2  0 X+1  7  6  7  8

generates a code of length 65 over Z9[X]/(X^2+3,3X) who�s minimum homogenous weight is 119.

Homogenous weight enumerator: w(x)=1x^0+1362x^119+2420x^120+4566x^121+8982x^122+11702x^123+15618x^124+24438x^125+27978x^126+31782x^127+50622x^128+49240x^129+48972x^130+61350x^131+52708x^132+40602x^133+40686x^134+25602x^135+14820x^136+10854x^137+3736x^138+1920x^139+834x^140+330x^141+84x^142+90x^143+8x^144+54x^145+36x^146+20x^147+18x^148+6x^149

The gray image is a code over GF(3) with n=585, k=12 and d=357.
This code was found by Heurico 1.16 in 448 seconds.